Das Gaußsche Verfahren ist weit verbreitet, insbesondere bei der Emulation. Es ist bekannt, dass der Rechenaufwand hoch ist ( ).
- Was macht sie beliebt?
- Was sind ihre wichtigsten und verborgenen Vorteile?
- Warum werden sie anstelle von parametrischen Modellen verwendet (mit parametrischem Modell meine ich eine typische lineare Regression, bei der verschiedene parametrische Formen verwendet werden können, um den Input-Output-Trend zu beschreiben, z. B. qaudratisch)?
Ich würde mich sehr über eine technische Antwort freuen, die die inhärenten Eigenschaften erklärt, die den Gaußschen Prozess einzigartig und vorteilhaft machen
Antworten:
Die Hauptvorteile sind aus technischer Sicht (wie @Alexey erwähnt). In dem weit verbreiteten Kriging- Verfahren können Sie Ihren eigenen "Raum" interpretieren, indem Sie ein "Korrelations" -Modell (oder Kovarianzmodell) bereitstellen (normalerweise als Variogrammellipsoid bezeichnet) ) für Beziehungen in Abhängigkeit von Entfernung und Ausrichtung .
Es gibt nichts, was andere Methoden daran hindert, die gleichen Merkmale zu haben. Es kam nur vor, dass die Art und Weise, wie Kriging zuerst konzipiert wurde, einen freundlichen Umgang mit Menschen hatte, die keine Statistiker waren.
Mit dem Aufkommen geostatistikbasierter stochastischer Methoden, wie beispielsweise der sequentiellen Gaußschen Simulation , werden diese Verfahren heutzutage in Sektoren eingesetzt, in denen es wichtig ist, den Unsicherheitsraum zu definieren (der Tausende bis Millionen von Dimensionen annehmen kann). Auch hier sind geostatistikbasierte Algorithmen aus technischer Sicht sehr einfach in die genetische Programmierung einzubeziehen . Wenn Sie also inverse Probleme haben , müssen Sie in der Lage sein, mehrere Szenarien zu testen und ihre Anpassungsfähigkeit an Ihre Optimierungsfunktion zu testen.
Lassen wir die reine Argumentation für einen Moment einen Zustand der Tatsachen für ein modernes reales Beispiel dieser Verwendung. Sie können entweder unterirdische Proben direkt abtasten (Hard-Data) oder eine seismische Karte des Untergrunds erstellen (Soft-Data).
In harten Daten können Sie eine Eigenschaft (sagen wir akustische Impedanz) direkt ohne (ish) Fehler messen. Das Problem ist, dass dies selten (und teuer) ist. Auf der anderen Seite haben Sie die seismische Abbildung, die buchstäblich eine volumenweise, pixelweise Abbildung des Untergrunds ist, aber keine akustische Impedanz liefert. Nehmen wir zur Vereinfachung an, Sie erhalten das Verhältnis zwischen zwei Werten der akustischen Impedanz (oben und unten). Ein Verhältnis von 0,5 könnte also eine Division von 1000/2000 oder 10 000/20 000 sein. Es ist ein Raum mit mehreren Lösungen, und mehrere Kombinationen reichen aus, aber nur eine repräsentiert die Realität genau. Wie lösen Sie das?
Die Art und Weise seismische Inversion funktioniert (die stochastischen Verfahren), besteht darin, plausible (und dies ist insgesamt eine andere Geschichte) Szenarien der akustischen Impedanz (oder anderer Eigenschaften) zu erzeugen, diese Szenarien in eine synthetische seismische umzuwandeln (wie das Verhältnis im vorherigen Beispiel) und Vergleichen Sie die synthetische seismische mit der realen (Korrelation). Die besten Szenarien werden verwendet, um noch mehr Szenarien zu erstellen, die zu einer Lösung zusammenlaufen (dies ist nicht so einfach, wie es scheint).
In Anbetracht dessen und unter dem Gesichtspunkt der Benutzerfreundlichkeit würde ich Ihre Fragen folgendermaßen beantworten:
1) Was sie beliebt macht, ist Benutzerfreundlichkeit, Flexibilität bei der Implementierung, eine gute Anzahl von Forschungszentren und Institutionen, die immer neue und anpassungsfähigere Gauß-basierte Verfahren für verschiedene Bereiche (insbesondere in den Geowissenschaften, einschließlich GIS) entwickeln.
2) Die Hauptvorteile sind , wie bereits erwähnt, aus meiner Sicht Benutzerfreundlichkeit und Flexibilität. Wenn es leicht zu manipulieren und zu bedienen ist, tun Sie es einfach. Es gibt keine besonderen Merkmale in Gaußschen Prozessen, die mit anderen Methoden (Statistiken oder auf andere Weise) nicht reproduzierbar sind.
3) Sie werden verwendet, wenn Sie mehr Informationen in Ihr Modell aufnehmen müssen als nur die Daten (Informationen wie raumbezogene Beziehungen, statistische Verteilungen usw.). Ich kann versichern, dass es Zeitverschwendung ist, wenn Sie viele Daten mit einem isotropen Verhalten mit Kriging haben. Sie können dieselben Ergebnisse mit jeder anderen Methode erzielen, die schneller ausgeführt werden kann, wenn weniger Informationen erforderlich sind.
quelle
Für Ingenieure ist es wichtig:
Gaußsche Prozesse erfüllen alle diese Anforderungen.
Darüber hinaus sind technische und geostatistische Datensätze häufig nicht so groß oder haben eine spezifische Gitterstruktur, die eine schnelle Inferenz ermöglicht.
quelle
Die Vorteile des Gaußschen Modells.
Gaußsches PDF hängt nur von den Momenten 1. und 2. Ordnung ab. Ein stationärer Gauß-Prozess mit weitem Sinn ist auch ein stationärer Prozess mit strengem Sinn und umgekehrt.
Gaußsche PDFs können die Verteilung vieler Prozesse modellieren, einschließlich einiger wichtiger Klassen von Signalen und Rauschen. Die Summe vieler unabhängiger Zufallsprozesse hat eine Gaußsche Verteilung (zentraler Grenzwertsatz).
Nicht-Gaußsche Prozesse können durch eine gewichtete Kombination (dh eine Mischung) einer Anzahl von Gaußschen PDFs mit geeigneten Mitteln und Varianzen angenähert werden.
Optimale Schätzmethoden, die auf Gaußschen Modellen basieren, führen häufig zu linearen und mathematisch nachvollziehbaren Lösungen.
quelle