Beispiel einer nicht negativen diskreten Verteilung, bei der der Mittelwert (oder ein anderer Moment) nicht existiert?

20

Ich habe in scipy gearbeitet und es kam eine Unterhaltung mit einem Mitglied der Kerngruppe von scipy auf, ob eine nicht negative diskrete Zufallsvariable einen undefinierten Moment haben kann. Ich denke, er hat Recht, aber keinen Beweis parat. Kann jemand diese Behauptung zeigen / beweisen? (oder wenn diese Behauptung nicht wahr ist, widerlegen Sie)

Ich habe kein praktisches Beispiel, wenn die diskrete Zufallsvariable aber es scheint, dass eine diskrete Version der Cauchy-Distribution als Beispiel dienen sollte, um einen undefinierten Moment zu erhalten. Die Bedingung der Nicht-Negativität (möglicherweise einschließlich ) scheint das Problem herausfordernd zu machen (zumindest für mich). 0Z0

Lucas Roberts
quelle

Antworten:

15

Die CDF gleich bei den ganzen Zahlen ansonsten überall stückweise konstant sind und allen Kriterien unterworfen sind, um eine CDF zu sein. Die Erwartung istF11/nn=1,2,,

0(1F(x))dx=1/2+1/3+1/4+

was divergiert. In diesem Sinne ist der erste Moment (und damit alle höheren Momente) unendlich. (Siehe Bemerkungen am Ende zur weiteren Ausarbeitung.)


Wenn Sie mit dieser Notation nicht zufrieden sind, beachten Sie, dass fürn=1,2,3,,

PrF(n)=1n1n+1.

Dies definiert eine Wahrscheinlichkeitsverteilung, da jeder Term positiv ist und

n=1PrF(n)=n=1(1n1n+1)=limn11n+1=1.

Die Erwartung ist

n=1nPrF(n)=n=1n(1n1n+1)=n=11n+1=1/2+1/3+1/4+

was divergiert.

Diese Art, die Antwort auszudrücken, macht deutlich, dass alle Lösungen durch solche unterschiedlichen Reihen erhalten werden. In der Tat, wenn Sie möchten, dass die Verteilung auf einer Teilmenge der positiven Werte mit Wahrscheinlichkeiten , die zur Einheit summieren, unterstützt wird, dann für die Erwartung, dass die Reihe divergiert das drückt es nämlich ausx1,x2,,xn,,p1,p2,

(an)=(xnpn),

müssen abweichende Teilsummen haben.

Umgekehrt ist jede abweichende Reihe von nicht negativen Zahlen mit vielen diskreten positiven Verteilungen verbunden, die eine abweichende Erwartung haben. (an) ( a n ) ( x n ) ( p n ) q n = 2 - n y n = 2 n a n n = 1 , 2 , . Ω y n Ω = { ω 1 , & ohgr; 2 , ... , ω i , ... } , Ω Zum Beispiel könnten Sie mit den folgenden Algorithmus anwenden, um die Folgen und zu bestimmen . Beginnen Sie, indem Sie und für Definieren Sie als die Menge aller , die auf diese Weise entstehen, indizieren Sie ihre Elemente als und definieren Sie eine Wahrscheinlichkeitsverteilung für durch(an)(xn)(pn)qn=2nyn=2nann=1,2,.ΩynΩ={ω1,ω2,,ωi,},Ω

Pr(ωi)=nyn=ωiqn.

Dies funktioniert, weil die Summe von gleich der Summe von was und höchstens eine abzählbare Anzahl von positiven Elementen hat.pnqn,1,Ω

Beispielsweise ist die Reihe offensichtlich divergierend. Der Algorithmus gibt(an)=(1,1/2,1,1/2,)

y1=2a1=2; y2=22a2=2; y3=23a3=8;

Somit ist

Ω={2,8,32,128,,22n+1,}

ist die Menge von ungeraden positiven Potenzen von und2

p1=q1+q2=3/4; p2=q3+q4=3/16; p3=q5+q6=3/64;


Über unendliche und nicht existierende Momente

Wenn alle Werte positiv sind, gibt es keinen "undefinierten" Moment: Es gibt alle Momente, aber sie können im Sinne einer abweichenden Summe (oder eines Integrals) unendlich sein, wie zu Beginn dieser Antwort gezeigt.

Im Allgemeinen sind alle Momente für positive Zufallsvariablen definiert, da die Summe oder das Integral, das sie ausdrückt, entweder absolut konvergiert oder divergiert ("unendlich"). Im Gegensatz dazu können Momente für Variablen, die positive und negative Werte annehmen , undefiniert werden , weil der Moment per Definition des Lebesgue-Integrals die Differenz zwischen einem Moment des positiven Teils und einem Moment des absoluten Wertes des negativen Teils ist. Wenn beide unendlich sind, ist die Konvergenz nicht absolut und Sie haben das Problem, eine Unendlichkeit von einer Unendlichkeit zu subtrahieren: das gibt es nicht.

whuber
quelle
Gibt dieses Argument ein Beispiel für einen unendlichen oder einen undefinierten Moment? Ich suche einen undefinierten Moment. Vielleicht gibt es eine Feinheit von undefinierten und unendlichen Momenten, die mir fehlen, um Ihre Antwort vollständig zu verstehen.
Lucas Roberts
2
Wenn alle Werte positiv sind, gibt es keinen "undefinierten" Moment: Momente existieren alle, aber sie können unendlich sein.
Whuber
4
Alle Momente sind für positive Zufallsvariablen definiert. Einige mögen unendlich sein, das ist alles. Momente können für Variablen, die positive und negative Werte annehmen, undefiniert werden, da der Moment per Definition des Lebesgue-Integrals die Differenz zwischen einem Moment des positiven Teils und einem Moment des absoluten Werts des negativen Teils ist. Wenn beide unendlich sind, haben Sie das Problem, eine Unendlichkeit von einer Unendlichkeit zu subtrahieren: das gibt es nicht.
Whuber
1
"Alle Momente sind für positive Zufallsvariablen definiert. Einige können unendlich sein, das ist alles." Angesichts der Tatsache, dass der Titel der Frage Momente betrifft, die nicht existieren , denke ich, dass ein Großteil dieses Kommentars es verdient, in die Antwort eingearbeitet zu werden!
Silverfish
1
Ich denke, ich hätte die Antwort in diesem Beitrag begraben finden können: stats.stackexchange.com/questions/243150/…
Lucas Roberts
39

Hier ist ein berühmtes Beispiel: Lasse für jede ganze Zahl den Wert mit der Wahrscheinlichkeit . Dann nimmt Werte in (eine Teilmenge von) den positiven ganzen Zahlen an; Die Gesamtmasse ist , aber ihre Erwartung ist Diese Zufallsvariable entsteht im St. Petersburg-Paradoxon .2 k 2 - k k 1 X & Sigma; k = 1 2 - k = 1 E ( X ) = & Sigma; k = 1 2 k P ( X = 2 k ) = & Sigma; k = 1 1 = . XX2k2kk1Xk=12k=1

E(X)=k=12kP(X=2k)=k=11=.
X
grand_chat
quelle
6
+1 Ich mag dieses wegen seiner historischen und philosophischen Verbindungen.
Whuber
Paradoxe Lösung: Wenn Sie gewinnen, werden Sie von den G-Kräften niedergeschlagen.
Joshua
8
  1. Die Zeta-Verteilung ist eine ziemlich bekannte diskrete Verteilung auf den positiven ganzen Zahlen, die keinen endlichen Mittelwert hat (für ).1<θ2

    P(X=x|θ)=1ζ(θ)xθ,x=1,2,...,θ>1

    wo die Normalisierungskonstante , ist die Riemannsche Zetafunktionζ()

    (edit: Der Fall ist der Antwort von whuber sehr ähnlich)θ=2

    Eine andere Verteilung mit ähnlichem Schwanzverhalten ist die Yule-Simon- Verteilung.

  2. Ein weiteres Beispiel wäre die Beta-negative Binomialverteilung mit :0<α1

    P(X=x|α,β,r)=Γ(r+x)x!Γ(r)B(α+r,β+x)B(α,β),x=0,1,2...α,β,r>0

Glen_b - Setzen Sie Monica wieder ein
quelle
0

eine diskretisierte Version der Cauchy-Distribution

Ja, wenn Sie als Durchschnittswert der Cauchy-Verteilung im Intervall um annehmen , dann ist sein nullter Moment eindeutig derselbe wie der der Cauchy-Verteilung, und sein erster Moment nähert sich asymptotisch dem ersten Moment der Cauchy-Verteilung. Was "das Intervall um " betrifft, spielt es keine Rolle, wie Sie das definieren; nimm , , , vel cetera , und es wird funktionieren. Für positive ganze Zahlen können Sie auch . Der nullte Moment summiert sich zu Eins, und der erste Moment ist die Summe von , die auseinander geht.n n ( n - 1 , n ] [ n , n + 1 ) [ n - 0,5 , n +p(n)nn(n1,n][n,n+1)[n.5,n+.5)p(n)=6(nπ)26nπ2

Und in der Tat für jedes Polynom , gibt es einige ist , so dass Summen 1. Wenn wir das dann nehmen - te Moment, wo die Ordnung ist , das wird auseinander gehen.c cp(n)c kkp(n)cp(n)kkp(n)

Akkumulation
quelle