Ich werde das ARMA-GARCH-Modell für finanzielle Zeitreihen verwenden und habe mich gefragt, ob die Reihe stationär sein soll, bevor ich das Modell anwende. Ich weiß, dass das ARMA-Modell angewendet werden muss, aber ich bin mir nicht sicher, ob die Reihe stationär sein soll, da ich GARCH-Fehler einbeziehe, die eine Häufung von Volatilitäten und eine nicht konstante Varianz implizieren, und daher instationäre Reihen, egal welche Transformation ich mache .
Sind finanzielle Zeitreihen normalerweise stationär oder instationär? Ich habe versucht, einen ADF-Test auf einige flüchtige Serien anzuwenden, und dabei einen p-Wert <0,01 erhalten, was auf Stationarität hinzudeuten scheint, aber das Prinzip der flüchtigen Serien selbst sagt uns, dass die Serie nicht stationär ist.
Kann jemand das für mich klären? Ich werde wirklich verwirrt
quelle
Ja, die Serie sollte stationär sein. GARCH-Modelle sind tatsächlich Prozesse mit weißem Rauschen und nicht trivialer Abhängigkeitsstruktur. Das klassische GARCH (1,1) -Modell ist definiert als
mit
wo sind unabhängig Standardnormalvariablen mit Einheitsvarianz.εt
Dann
und
quelle
For anyone who is wondering about this question still, i will clarify - Volatility clustering does not at all imply that the series is non-stationary. It would suggest that there is a shifting conditional variance regime - which may still satisfy constancy of the unconditional distribution.
The GARCH(1,1) model of Bollerslev is not weakly stationary whenα1+β>1 , however it is actually still stricktly stationary for a much larger range, Nelson 1990. Further Rahbek & Jensen 2004 (Asymptotic inference in the non-stationary GARCH), showed that the ML estimator of α1 and β is consistent and asymptotically normal for any parameter specification that ensure the model is non-stationary. Combining this with the results of Nelson 1990 (all weak or strict stationary GARCH(1,1) models have MLE estimator as consistent and asymptotically normal), suggests that any parameter combination whatsoever of α1 and β>1 will have consistent and Asymptotically normal estimators.
It is important to note however that if the GARCH(1,1) model is non stationary, the constant term in the conditional variance is not estimated consistently.
Regardless, this suggests that you do not have to worry about stationarity before estimating the GARCH model. You do however have to wonder whether it seems to have a symmetric distribution, and whether the series has high persistence, as this is not allowed in the classical GARCH(1,1) model. When you have estimated the model it is of interest to test whetherα1+β=1 if you are working with financial timeseries, since this would imply a trending conditional variance which is hard to immagine being a behavioral tendency amongst investors. Testing this however can be done with a normal LR test.
Stationarity is fairly misunderstood, and is only partially connected to whether the variance or mean seems to be ocationally changing - as this can still ocour while the process maintains a constant unconditional distribution. The reason you may think that the seeming shifts in variance may cause a departure from stationarity, is because such a thing as permanent levelshift in the variance equation (or the mean equation) would by definition break stationarity. But if the changes are caused by the dynamic specification of the model, it may still be stationary even though the mean is impossible to identify and the volatility constantly changes. Another Beautiful example of this is the DAR(1,1) model introduced by Ling in 2002.
quelle
Stationarity is a theoretical concept which is then modified to other forms like Weak Sense Stationarity which can be tested easily. Most of the tests like adf test as you have mentioned test for linear conditions only. the ARCH effects are made for series which do not have autocorrelation in the first order but there is dependence in the squared series.
The ARMA-GARCH process you talk about, here the second order dependence is removed using the GARCH part and then any dependence in the linear terms is captured by the ARMA process.
The way to go about is to check for the autocorrelation of the squared series, if there is dependence, then apply the GARCH models and check the residuals for any linear time series properties which can then be modelled using ARMA processes.
quelle