Eine englische Fußballmannschaft spielt eine Reihe von Spielen gegen verschiedene Gegner mit unterschiedlichen Fähigkeiten. Ein Buchmacher bietet für jedes Spiel eine Quote an, ob es sich um einen Heimsieg, einen Auswärtssieg oder ein Unentschieden handelt. In der Mitte der Saison hat die Mannschaft Spiele bestritten und davon gezogen, was mehr ist, als man von den Gewinnchancen erwarten kann.
Wie groß ist die Wahrscheinlichkeit, dass der Buchmacher die Gewinnchancen für diese Spiele falsch einschätzt, anstatt nur Pech zu haben? Wenn der Buchmacher des Teams verbleibenden Spiele in ähnlicher Weise die Preis weiter, und ich wette , dass jeder ein Unentschieden sein wird, was ist mein erwartete Rendite?
probability
games
gambling
Rodrigo de Azevedo
quelle
quelle
Antworten:
Die Antwort auf Ihre Frage hängt stark davon ab, welche Informationen und Annahmen Sie verwenden werden. Dies liegt daran, dass das Ergebnis eines Spiels ein außerordentlich komplizierter Prozess ist. Es kann beliebig kompliziert werden, je nachdem, über welche Informationen Sie verfügen:
Die Gewinnchancen, die ein Buchmacher gibt, spiegeln nicht die Gewinnchancen der Buchmacher wider. was unmöglich ist, wenn sie Wahrscheinlichkeiten sind. Ein Buchmacher passt die Gewinnchancen an, wenn jemand auf ein Unentschieden setzt, und passt sie an, wenn jemand auf ein Nicht-Unentschieden setzt. Somit spiegeln die Gewinnchancen die Gewinnchancen der Spieler (die diesen Buchmacher verwenden) als Ganzes wider. Es ist also nicht der Buchmacher, der per se die Preise falsch bewertet, sondern das Glücksspielkollektiv - oder der "durchschnittliche Spieler".
Wenn Sie nun bereit sind anzunehmen, dass der "Kausalmechanismus", der zu einem Unentschieden führt, über die gesamte Saison konstant bleibt (vernünftig? Wahrscheinlich nicht ...), wird ein einfaches mathematisches Problem erhalten (aber beachten Sie, dass es keinen Grund dafür gibt "richtiger" sein als irgendeine andere vereinfachende Annahme). Um uns daran zu erinnern, dass dies die verwendete Annahme ist, wird ein auf die Konditionierungsseite der Wahrscheinlichkeiten gesetzt. Unter dieser Annahme gilt die Binomialverteilung:A
Und wir wollen folgendes berechnen
wobei
ist der hintere für . In diesem Fall ist es ziemlich offensichtlich, dass ein Unentschieden möglich ist und dass es auch nicht passieren kann. Daher ist ein einheitlicher Prior angemessen (es sei denn, es gibt zusätzliche Informationen, die wir über die Saisonergebnisse hinaus einbeziehen möchten ) und wir setzen . Der hintere Teil wird dann durch eine Beta-Verteilung angegeben (wobei die Beta-Funktion ist ).θ P(θ|A)=1 B(α,β)
Wenn und die Wahrscheinlichkeit, dass die nächste Übereinstimmung ein Unentschieden ist, nur so dass das Integral wird:θ A θ
und daher ist die Wahrscheinlichkeit nur:
Beachten Sie jedoch, dass dies von abhängt - den getroffenen Annahmen. Nennen Sie die "Preisquoten" eine Wahrscheinlichkeit, die von anderen unbekannten komplexen Informationen abhängig ist, z . B.Wenn sich die veröffentlichten Quoten von dem oben genannten Bruchteil unterscheiden, bedeutet dies, dass und zu unterschiedlichen Schlussfolgerungen führen, sodass beide hinsichtlich des "wahren Ergebnisses" nicht richtig sein können (aber beide können unter der Voraussetzung der jeweils getroffenen Annahmen richtig sein ).A B A B
DER KILLER SCHLAG
Dieses Beispiel hat gezeigt, dass die Antwort auf Ihre Frage darauf hinauslief, zu entscheiden, ob bei der Beschreibung der Mechanik des Fußballspiels "genauer" als . Dies geschieht unabhängig davon, was der Satz ist . Wir werden uns immer auf die Frage beschränken, "wessen Annahmen sind richtig, die des Glücksspielkollektivs oder meiner?" Diese letzte Frage ist im Grunde genommen eine unbeantwortbare Frage, bis Sie genau wissen, woraus der Satz besteht (oder zumindest einige Schlüsselmerkmale davon). Denn wie kann man etwas, das bekannt ist, mit etwas vergleichen, das nicht bekannt ist?A B A B
UPDATE: Eine aktuelle Antwort :)
Wie @whuber frech betont hat, habe ich hier keinen erwarteten Wert angegeben - daher vervollständigt dieser Teil einfach diesen Teil meiner Antwort. Wenn man annehmen würde, dass mit einer Preisquote von wahr ist , dann würde man erwarten, dass man im nächsten Spiel erhältA Q
Wenn Sie nun davon ausgehen, dass der Wert von auf demselben Modell wie Ihr basiert, können wir genau vorhersagen, wie sich Zukunft ändern wird. Angenommen, basiert auf einem anderen vor dem einheitlichen, beispielsweise , dann ist die entsprechende WahrscheinlichkeitQ Q Q Beta(αQ,βQ)
mit der erwarteten Rückkehr von
Wenn wir nun das "vorherige Gewicht" wobei die Länge der Saison ist (dies ermöglicht es dem "Fehlpreis", bis in den Rest der Saison fortzufahren) und Setzen Sie die erwartete Rendite auf Null.αQ+βQ=N2 N
(HINWEIS: Sofern dies nicht das tatsächliche Modell ist, hängt davon ab, wann diese Berechnung durchgeführt wurde, da es von abhängt die sich im Laufe der Zeit ändern.) Jetzt können wir vorhersagen, wie in Zukunft angepasst wird. Es wird zum Nenner für jede Übereinstimmung und zum Zähler hinzugefügt , wenn die Übereinstimmung ein Unentschieden war. Die erwarteten Gewinnchancen nach dem ersten Spiel sind also:αQ n,k,Q Q 1 1
Das ist die Wahrscheinlichkeit, dass sich im Laufe der Saison nicht viel ändert. Mit dieser Näherung erhalten wir die erwartete Rendite für den Rest der Saison wie folgt:
Denken Sie jedoch daran, dass dies auf dem übermäßig vereinfachten Modell einer Auslosung basiert (Hinweis: Dies bedeutet nicht unbedingt, dass es sich um einen "Mist" -Prädiktor handelt). Es kann keine eindeutige Antwort auf Ihre Frage geben, da es kein bestimmtes Modell und keine festgelegten vorherigen Informationen gibt (z. B. wie viele Personen verwenden diesen Buchmacher? Wie hoch ist der Umsatz des Buchmachers? Wie beeinflussen meine Wetten die Gewinnchancen?). Das einzige, was angegeben wurde, sind die Daten aus einer Saison, und dass für "ein nicht spezifiziertes Modell" die Wahrscheinlichkeiten nicht mit denen übereinstimmen, die durch die Quotenpreise impliziert werden.
quelle
Buchmacher verwenden einen Overround, sodass es ihnen eigentlich egal ist, was das Ergebnis ist, weil sie gewinnen, was auch immer. Deshalb trifft man nie einen armen Buchmacher. Wenn ein Buchmacher falsch bewertet, hängt Ihre Fähigkeit, Gewinne zu erzielen, von den Chancen ab, die der Buchmacher angeboten hat, und davon, ob die erzielten Gewinne die Zeiten abdecken, in denen Sie verlieren.
quelle