Gibt es eine Möglichkeit zu bestimmen, welche Merkmale / Variablen des Datensatzes innerhalb einer k-means Cluster-Lösung am wichtigsten / dominantesten
Gibt es eine Möglichkeit zu bestimmen, welche Merkmale / Variablen des Datensatzes innerhalb einer k-means Cluster-Lösung am wichtigsten / dominantesten
Ich höre oft Leute, die über neuronale Netze als eine Art Black-Box sprechen, die Sie nicht verstehen, was sie tun oder was sie bedeuten. Ich kann eigentlich nicht verstehen, was sie damit meinen! Wenn Sie verstehen, wie Backpropagation funktioniert, wie ist es dann eine Blackbox? Bedeuten sie,...
Von hier aus überprüfe ich eine Implementierung von Logistic Regression . Nachdem ich diesen Artikel gelesen habe, scheint es wichtig zu sein, die besten Koeffizienten für die Bestimmung der Sigmoidfunktion zu finden. Ich frage mich nur, warum diese Methode "Logistische Regression" heißt. Hängt es...
RNN kann zur Vorhersage oder Sequenz-zu-Sequenz-Zuordnung verwendet werden. Aber wie kann RNN zur Klassifizierung verwendet werden? Ich meine, wir geben einer ganzen Sequenz ein
Um SVM oder Neural Network zu verwenden, müssen kategoriale Variablen in numerische Variablen umgewandelt (kodiert) werden. In diesem Fall werden normalerweise 0-1 Binärwerte verwendet, wobei der k-te kategoriale Wert in (0,0, .. ., 1,0, ... 0) (1 ist auf der k-ten Position). Gibt es andere...
Wenn ich in einem maschinellen Lernalgorithmus richtig verstanden habe, muss das Modell aus seiner Erfahrung lernen, dh wenn das Modell die falsche Vorhersage für die neuen Fälle liefert, muss es sich an die neuen Beobachtungen anpassen und mit der Zeit wird das Modell immer besser . Ich sehe...
Ich habe theano zum Experimentieren mit LSTMs verwendet und mich gefragt, welche Optimierungsmethoden (SGD, Adagrad, Adadelta, RMSprop, Adam usw.) für LSTMs am besten funktionieren. Gibt es Forschungsarbeiten zu diesem Thema? Hängt die Antwort auch von der Art der Anwendung ab, für die ich das...
Der Lernratenparameter ( ) in Gradient Boosting verringert den Beitrag jedes neuen Basismodells - normalerweise eines flachen Baums -, das in der Reihe hinzugefügt wird. Es hat sich gezeigt, dass die Genauigkeit des Testsatzes drastisch erhöht wird, was verständlich ist, da mit kleineren Schritten...
Ich bin neu im maschinellen Lernen und suche nach Datensätzen, mit denen ich die Unterschiede zwischen verschiedenen Algorithmen für maschinelles Lernen (Decision Trees, Boosting, SVM und Neuronale Netze) vergleichen und gegenüberstellen kann. Wo finde ich solche Datensätze? Wonach sollte ich...
Entscheidungsstumpf ist ein Entscheidungsbaum mit nur einer Teilung. Es kann auch als stückweise Funktion geschrieben werden. Angenommen, ist ein Vektor und ist die erste Komponente von . Bei der Regressionseinstellung kann es sich um einen Entscheidungsstumpf handelnx 1 xxxxx1x1x_1xxx f( x ) = {...
Ich habe einen Datensatz mit 140000 Beispielen und 30 Funktionen, für die ich mehrere Klassifikatoren für eine binäre Klassifizierung trainiere (SVM, Logistic Regression, Random Forest usw.). In vielen Fällen ist die Optimierung von Hyperparametern für den gesamten Datensatz mithilfe der Raster-...
Ich habe mich bemüht, das Konzept der negativen Abtastung im Kontext von word2vec zu verstehen. Ich bin nicht in der Lage, die Idee der [negativen] Probenahme zu verdauen. Zum Beispiel wird in Mikolovs Arbeiten die negative Stichprobenerwartung wie folgt formuliert Logσ( ⟨ W , c ⟩ ) + k ⋅ EcN∼ PD[...
Ich benutze derzeit Viterbi-Training für ein Bildsegmentierungsproblem. Ich wollte wissen, welche Vor- und Nachteile die Verwendung des Baum-Welch-Algorithmus anstelle des Viterbi-Trainings hat.
Ich suche nach Artikeln oder Texten, die vergleichen und diskutieren (entweder empirisch oder theoretisch): Boosting- und Entscheidungsbaum- Algorithmen wie Random Forests oder AdaBoost und GentleBoost werden auf Entscheidungsbäume angewendet. mit Deep Learning Methoden wie Restricted Boltzmann...
Ich möchte meine Textdaten klassifizieren. Ich habe 300 classes200 Schulungsunterlagen pro Klasse (so 60000 documents in total) und dies wird wahrscheinlich zu sehr hohen Maßangaben führen (wir suchen möglicherweise nach mehr als 1 Million Dimensionen ). Ich möchte die folgenden Schritte in der...
Es gibt Wörter aus "Die Elemente des statistischen Lernens" auf Seite 91: Die K-Schwerpunkte im p-dimensionalen Eingangsraum überspannen höchstens den K-1-dimensionalen Unterraum, und wenn p viel größer als K ist, ist dies ein beträchtlicher Dimensionsabfall. Ich habe zwei Fragen: Warum überspannen...
Aus heutiger Sicht passt diese Frage nicht zu unserem Q & A-Format. Wir erwarten, dass die Antworten durch Fakten, Referenzen oder Fachwissen gestützt werden, aber diese Frage wird wahrscheinlich Debatten, Argumente, Abstimmungen oder erweiterte Diskussionen hervorrufen. Wenn...
Kann mir jemand die Vor- und Nachteile der Klassifikation SVM erklären, die sie von anderen Klassifikatoren
Ich muss URLs in Kategorien einteilen. Angenommen, ich habe 15 Kategorien, für die ich vorhabe, jede URL auf null zu setzen. Ist ein 15-Wege-Klassifikator besser? Wobei ich 15 Labels habe und Features für jeden Datenpunkt generiere. Oder bauen Sie 15 binäre Klassifizierer auf, sagen Sie: Film oder...
Ist die Umsetzung von ER effizienter (ähnlich Extreme Gradient Boostingwie die Steigerung des Gradienten) - ist der Unterschied aus praktischer Sicht wichtig? Es gibt ein R-Paket, das sie implementiert. Ist es ein neuer Algorithmus, der die "generische" Implementierung (RandomForest-Paket von R)...