Ich bin ein neuer Benutzer von WinBUGS und habe eine Frage für Ihre Hilfe. Nachdem ich den folgenden Code ausgeführt habe, habe ich Parameter von beta0
through beta4
(Statistiken, Dichte) erhalten, aber ich weiß nicht, wie ich die Vorhersage des letzten Werts von erhalten soll h
, den ich NA
im Code modellieren möchte .
Kann mir jemand einen Hinweis geben? Jeder Rat wäre sehr dankbar.
model {
for(i in 1: N) {
CF01[i] ~ dnorm(0, 20)
CF02[i] ~ dnorm(0, 1)
h[i] ~ dpois (lambda [i])
log(lambda [i]) <- beta0 + beta1*CF03[i] + beta2*CF02[i] + beta3*CF01[i] + beta4*IND[i]
}
beta0 ~ dnorm(0.0, 1.0E-6)
beta1 ~ dnorm(0.0, 1.0E-6)
beta2 ~ dnorm(0.0, 1.0E-6)
beta3 ~ dnorm(0.0, 1.0E-6)
beta4 <- log(p)
p ~ dunif(lower, upper)
}
INITS
list(beta0 = 0, beta1 = 0, beta2 = 0, beta3 = 0, p = 0.9)
DATA(LIST)
list(N = 154, lower = 0.80, upper = 0.95,
h = c(1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 3, 0, 0, 0, 2, 0, 1, 0, 4, 2,
3, 0, 2, 1, 1, 2, 2, 2, 3, 4, 2, 3, 1, 0, 1, 3, 3, 3, 1, 0, 1,
0, 5, 2, 1, 2, 1, 3, 3, 1, 1, 0, 2, 2, 0, 3, 0, 0, 3, 2, 2, 2,
1, 0, 3, 3, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 0, 2, 1, 0, 0, 2, 5,
0, 2, 1, 0, 2, 1, 2, 2, 2, 0, 3, 2, 1, 3, 3, 3, 3, 0, 1, 3, 3,
3, 1, 0, 0, 1, 2, 1, 0, 1, 4, 1, 1, 1, 1, 2, 1, 3, 0, 0, 1, 1,
1, 1, 0, 2, 1, 0, 0, 1, 1, 5, 1, 1, 1, 3, 0, 1, 1, 1, 0, 2, 1,
0, 3, 3, 0, 0, 1, 2, 6, NA),
CF03 = c(-1.575, 0.170, -1.040, -0.010, -0.750,
0.665, -0.250, 0.145, -0.345, -1.915, -1.515,
0.215, -1.040, -0.035, 0.805, -0.860, -1.775,
1.725, -1.345, 1.055, -1.935, -0.160, -0.075,
-1.305, 1.175, 0.130, -1.025, -0.630, 0.065,
-0.665, 0.415, -0.660, -1.145, 0.165, 0.955,
-0.920, 0.250, -0.365, 0.750, 0.045, -2.760,
-0.520, -0.095, 0.700, 0.155, -0.580, -0.970,
-0.685, -0.640, -0.900, -0.250, -1.355, -1.330,
0.440, -1.505, -1.715, -0.330, 1.375, -1.135,
-1.285, 0.605, 0.360, 0.705, 1.380, -2.385, -1.875,
-0.390, 0.770, 1.605, -0.430, -1.120, 1.575, 0.440,
-1.320, -0.540, -1.490, -1.815, -2.395, 0.305,
0.735, -0.790, -1.070, -1.085, -0.540, -0.935,
-0.790, 1.400, 0.310, -1.150, -0.725, -0.150,
-0.640, 2.040, -1.180, -0.235, -0.070, -0.500,
-0.750, -1.450, -0.235, -1.635, -0.460, -1.855,
-0.925, 0.075, 2.900, -0.820, -0.170, -0.355,
-0.170, 0.595, 0.655, 0.070, 0.330, 0.395, 1.165,
0.750, -0.275, -0.700, 0.880, -0.970, 1.155, 0.600,
-0.075, -1.120, 1.480, -1.255, 0.255, 0.725,
-1.230, -0.760, -0.380, -0.015, -1.005, -1.605,
0.435, -0.695, -1.995, 0.315, -0.385, -0.175,
-0.470, -1.215, 0.780, -1.860, -0.035, -2.700,
-1.055, 1.210, 0.600, -0.710, 0.425, 0.155, -0.525,
-0.565),
CF02 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, 0.38, 0.06, -0.94,
-0.02, -0.28, -0.78, -0.95, 2.33, 1.43, 1.24, 1.26,
-0.75, -1.5, -2.09, 1.01, -0.05, 2.48, 2.48, 0.46,
0.46, -0.2, -1.11, 0.52, -0.37, 0.58, 0.86, 0.59,
-0.12, -1.33, 1.4, -1.84, -1.4, -0.76, -0.23,
-1.78, -1.43, 1.2, 0.32, 1.87, 0.43, -1.71, -0.54,
-1.25, -1.01, -1.98, 0.52, -1.07, -0.44, -0.24,
-1.31, -2.14, -0.43, 2.47, -0.09, -1.32, -0.3,
-0.99, 1.1, 0.41, 1.01, -0.19, 0.45, -0.07, -1.41,
0.87, 0.68, 1.61, 0.36, -1.06, -0.44, -0.16, 0.72,
-0.69, -0.94, 0.11, 1.25, 0.33, -0.05, 0.87, -0.37,
-0.2, -2.22, 0.26, -0.53, -1.59, 0.04, 0.16, -2.66,
-0.21, -0.92, 0.25, -1.36, -1.62, 0.61, -0.2, 0,
1.14, 0.27, -0.64, 2.29, -0.56, -0.59, 0.44, -0.05,
0.56, 0.71, 0.32, -0.38, 0.01, -1.62, 1.74, 0.27, 0.97,
1.22, -0.21, -0.05, 1.15, 1.49, -0.15, 0.05, -0.87,
-0.3, -0.08, 0.5, 0.84, -1.67, 0.69, 0.47, 0.44,
-1.35, -0.24, -1.5, -1.32, -0.08, 0.76, -0.57,
-0.84, -1.11, 1.94, -0.68),
CF01 = c(NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, -0.117, -0.211, -0.333, -0.229, -0.272,
-0.243, -0.148, 0.191, -0.263, -0.239, -0.168,
-0.381, -0.512, -0.338, -0.296, 0.067, 0.104,
-0.254, -0.167, -0.526, -0.096, -0.43, 0.013,
-0.438, -0.297, -0.131, -0.098, -0.046, -0.063,
-0.194, -0.155, -0.645, -0.603, -0.374, -0.214,
-0.165, -0.509, -0.171, -0.442, -0.468, -0.289,
-0.427, -0.519, -0.454, 0.046, -0.275, -0.401,
-0.542, -0.488, -0.52, -0.018, -0.551, -0.444,
-0.254, -0.286, 0.048, -0.03, -0.015, -0.219,
-0.029, 0.059, 0.007, 0.157, 0.141, -0.035, 0.136,
0.526, 0.113, 0.22, -0.022, -0.173, 0.021, -0.027,
0.261, 0.082, -0.266, -0.284, -0.097, 0.097, -0.06,
0.397, 0.315, 0.302, -0.026, 0.268, -0.111, 0.084,
0.14, -0.073, 0.287, 0.061, 0.035, -0.022, -0.091,
-0.22, -0.021, -0.17, -0.184, 0.121, -0.192,
-0.24, -0.283, -0.003, -0.45, -0.138, -0.143,
0.017, -0.245, 0.003, 0.108, 0.015, -0.219, 0.09,
-0.22, -0.004, -0.178, 0.396, 0.204, 0.342, 0.079,
-0.034, -0.122, -0.24, -0.125, 0.382, 0.072, 0.294,
0.577, 0.4, 0.213, 0.359, 0.074, 0.388, 0.253, 0.167),
IND = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
bayesian
bugs
prediction
winbugs
Bo Yu
quelle
quelle
h[N]
stattlambda[N]
... sagen und Sie erhalten die hintere Verteilung des vorhergesagten Wertes.h[N]
ist jedoch nicht der vorhergesagte Wert: Es handelt sich um eine Sammlung von Draws aus einer Reihe vorhergesagter Poisson-Verteilungen. Als solches kombiniert es Variation in den Poisson-Parametern und Variation von diesen Poisson-Verteilungen selbst. Relevant ist die posteriore Verteilung vonlambda[N]
.Antworten:
Fügen Sie einfach die Variable
h
zur Liste der zu überwachenden Parameter hinzu. Wenn Sie ein Paket wie R2WinBUGS verwenden, fügen Sieh
der Liste, die an dasparameters.to.save
Argument derbugs
Funktion übergeben wurde, eine Variable hinzu . Dann schauen Sie sich Ihren letzten Wert inh
(den mit NA) an - Sie erhalten dort eine hintere Verteilung.Dies ist die übliche Methode, um Vorhersagen in Bayes'scher Folgerung zu treffen ( siehe auch diese Frage ). Es ist schön und einfach! Keine Trennung von Parameterbewertung und Vorhersage mehr. Alles ist auf einmal erledigt. Die posteriore Verteilung der Parameter wird durch die tatsächlichen Daten angegeben und auf die NA-Werte übertragen (als "Vorhersagen").
quelle