Nehmen Sie als Beispiel die objektive Funktion des XGBoost-Modells in der ttt -ten Iteration: L(t)=∑i=1nℓ(yi,y^(t−1)i+ft(xi))+Ω(ft)L(t)=∑i=1nℓ(yi,y^i(t−1)+ft(xi))+Ω(ft)\mathcal{L}^{(t)}=\sum_{i=1}^n\ell(y_i,\hat{y}_i^{(t-1)}+f_t(\mathbf{x}_i))+\Omega(f_t) where ℓℓ\ell is the loss function,...
28
XGBoost Loss Funktion Approximation mit Taylor Expansion